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Decision tree

• One of the most intuitive classifiers that is easy to 
understand and construct
• However, it also works very (very) well 

• Categorical features are preferred. If feature values 
are continuous, they are discretized first.

• Application: Database mining

2 Decision Tree
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Example

• Attributes:
• A: age>40
• C: chest pain
• S: smoking
• P: physical test

• Label: 

• Heart disease (+), No heart disease (-)
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Decision tree: structure

• Leaves (terminal nodes) represent target variable
• Each leaf represents a class label

• Each internal node denotes a test on an attribute
• Edges to children for each of the possible values of that 

attribute 

4 Decision Tree
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Decision tree: learning

• Decision tree learning: construction of a decision 
tree from training samples.
• Decision trees used in data mining are usually 

classification trees

• There are many specific decision-tree learning 
algorithms, such as:
• ID3
• C4.5

• Approximates functions of usually discrete domain
• The learned function is represented by a decision tree

6 Decision Tree
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Decision tree learning

• Learning an optimal decision tree is NP-Complete
• Instead, we use a greedy search based on a heuristic

• We cannot guarantee to return the globally-optimal decision tree.

• The most common strategy for DT learning is a 
greedy top-down approach
• chooses a variable at each step that best splits the set of items.

• Tree is constructed by splitting samples into subsets 
based on an attribute value test in a recursive manner

7 Decision Tree
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How to construct basic decision tree?

• We prefer decisions leading to a simple, compact tree with 
few nodes

• Which attribute at the root?
• Measure: how well the attributes split the set into 

homogeneous subsets (having same value of target)
• Homogeneity of the target variable within the subsets. 

• How to form descendant?
• Descendant is created for each possible value of 𝐴

• Training examples are sorted to descendant nodes

8 Decision Tree
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Constructing a decision tree 

• Function FindTree(S,A) 

• If empty(A) or all labels of the samples in S are the same 

•   status = leaf 

•   class = most common class in the labels of S 

• else 

•   status = internal 

•   a ←bestAttribute(S,A) 

•   LeftNode = FindTree(S(a=1), A \ {a}) 

•   RightNode = FindTree(S(a=0), A \ {a}) 

• end 

• end 

9

Recursive calls to create left and right subtrees 

S(a=1) is the set of samples in S for which a=1 

Top down, Greedy, No backtrack

S: samples, A: attributes

Decision Tree
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ID3

•Function FindTree(S,A)   // S: samples, A: attributes

•   If empty(A) or all labels of the samples in S are the same:

•        status = leaf

•        class = most common class in the labels of S

•    else:

•        status = internal

•        a = bestAttribute(S,A)

•        LeftNode = FindTree(S(a=1), A \ {a})

•        RightNode = FindTree(S(a=0), A \ {a})

10 Decision Tree
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ID3

•ID3 (Examples, Target_Attribute, Attributes)

•Create a root node for the tree

•If all examples are positive, return the single-node tree Root, with label = +

•If all examples are negative, return the single-node tree Root, with label = -

•If number of predicting attributes is empty then 

•     return Root, with label = most common value of the target attribute in the examples

•else  

•A = The Attribute that best classifies examples.

•Testing attribute for Root = A.

•for each possible value, 𝑣𝑖, of A

•Add a new tree branch below Root, corresponding to the test A =𝑣𝑖 .
•Let Examples(𝑣𝑖) be the subset of examples that have the value for A

•if Examples(𝑣𝑖) is empty then

•       below this new branch add a leaf node with label = most common target value in the examples

•else below this new branch add subtree ID3 (Examples(𝒗𝒊), Target_Attribute, Attributes – {A})

•return Root

11 Decision Tree
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Which attribute is the best?

12 Decision Tree
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Which attribute is the best?

• A variety of heuristics for picking a good test
• Information gain: originated with ID3 (Quinlan,1979).

• Gini impurity

• …

• These metrics are applied to each candidate subset, and the 
resulting values are combined (e.g., averaged) to provide a 
measure of the quality of the split.

13 Decision Tree
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Entropy

𝐻 𝑋 = − ෍𝑥𝑖∈𝑋𝑃 𝑥𝑖 log 𝑃(𝑥𝑖)
• Entropy measures the uncertainty in a specific 

distribution

• Information theory:

• 𝐻 𝑋 : expected number of bits needed to encode a randomly 
drawn value of 𝑋 (under most efficient code)

• Most efficient code assigns −log 𝑃(𝑋 = 𝑖) bits to encode 𝑋 = 𝑖
• ⇒ expected number of bits to code one random 𝑋 is 𝐻(𝑋)

14 Decision Tree



Sharif University

of Technologytitle1515
Sharif University

of Technologytitle1515

Entropy for a Boolean variable

15

𝐻(𝑋)

𝑃(𝑋 = 1)
𝐻 𝑋 = −1 log2 1 − 0 log2 0 = 0𝐻 𝑋 = −0.5 log2 12 − 0.5 log2 12 = 1

Entropy as a measure 

of impurity

Decision Tree
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Information Gain (IG)

• 𝐴: variable used to split samples 

• 𝑌: target variable

• 𝑆: samples

16

𝐺𝑎𝑖𝑛 𝑆, 𝐴 ≡ 𝐻𝑆 𝑌 − ෍𝑣∈Values(𝐴) 𝑆𝑣𝑆 𝐻𝑆𝑣 𝑌

Decision Tree
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Mutual Information

• The expected reduction in entropy of 𝑌 caused by knowing 𝑋:𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋
                                 = − ෍𝑖 ෍𝑗 𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 log 𝑃 𝑋 = 𝑖 𝑃(𝑌 = 𝑗)𝑃 𝑋 = 𝑖, 𝑌 = 𝑗
• Mutual information in decision tree:

• 𝐻 𝑌 : Entropy of 𝑌 (i.e., labels) before splitting samples

• 𝐻 𝑌 𝑋 : Entropy of 𝑌 after splitting samples based on attribute 𝑋
• It shows expectation of label entropy obtained in different splits (where splits 

are formed based on the value of attribute 𝑋)  

17 Decision Tree
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Conditional entropy

𝐻 𝑌 𝑋 = − ෍𝑖 ෍𝑗𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 log 𝑃 𝑌 = 𝑗|𝑋 = 𝑖

18

𝐻 𝑌 𝑋 = ෍𝑖 𝑃 𝑋 = 𝑖 ෍𝑗−𝑃 𝑌 = 𝑗|𝑋 = 𝑖 log 𝑃 𝑌 = 𝑗|𝑋 = 𝑖
probability of following i-th value for 𝑋

Entropy of 𝑌 for samples with 𝑋 = 𝑖

Decision Tree
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Information Gain: Example

19

𝐻 𝑌 𝑊𝑖𝑛𝑑= 814 × 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑊𝑒𝑎𝑘 +614 × 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑆𝑡𝑟𝑜𝑛𝑔 == 814 × 0.811 + 614 × 1
𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦= 714 × 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻𝑖𝑔ℎ +714 × 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙= 714 × 0.985 + 714 × 0.592

Decision Tree
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Conditional entropy: example

20 Decision Tree
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Information Gain: Example

21 Decision Tree
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How to find the best attribute?

• Information gain as our criteria for a good split
• attribute that maximizes information gain is selected

• When a set of 𝑆 samples have been sorted to a 
node, choose 𝑗-th attribute for test in this node 
where: 𝑗 = argmax𝑖∈remaining atts. 𝐺𝑎𝑖𝑛 𝑆, 𝑋𝑖

•   = argmax𝑖∈remaining atts. 𝐻𝑆 𝑌 − 𝐻𝑆 𝑌|𝑋𝑖
•  = argmin𝑖∈remaining atts. 𝐻𝑆 𝑌|𝑋𝑖

22 Decision Tree
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Other splitting criteria

• Information gain are biased in favor of those attributes with 

more levels.

• More complex measures to select attribute 

• Example: attribute Date

• Gain Ratio:𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 𝑆, 𝐴 ≡ 𝐺𝑎𝑖𝑛 𝑆, 𝐴− σ𝑣∈Values(𝐴) 𝑆𝑣𝑆 log 𝑆𝑣𝑆
23 Decision Tree
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Measure of Impurity: GINI

• Gini Index for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at node t).

• Maximum (1 - 1/nc) when records are equally distributed 
among all classes, implying least interesting information

• Minimum (0) when all records belong to one class, implying 
most interesting information

−=
j

tjptGINI 2)]|([1)(
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Examples for computing GINI

C1 0 

C2 6 
 

 

C1 2 

C2 4 
 

 

C1 1 

C2 5 
 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

−=
j

tjptGINI 2)]|([1)(

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444
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26 Decision Tree

Splitting Based on GINI

• Used in CART, SLIQ, SPRINT.

• When a node p is split into k partitions (children), the quality 
of split is computed as,

 

 where, ni = number of records at child i,

      n = number of records at node p.


=

=
k

i

i
split iGINI

n

n
GINI

1
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27 Decision Tree

Binary Attributes: Computing GINI Index

Splits into two partitions

 Parent 

C1 6 

C2 6 

Gini = 0.500 

 

 N1 N2 

C1 5 1 

C2 2 4 

Gini=0.333 
 

 

Gini(N1) 

= 1 – (5/7)2 – (2/7)2 

= 0.194 

Gini(N2) 

= 1 – (1/5)2 – (4/5)2 

= 0.528

Gini(Children) 

= 7/12 * 0.194 + 

   5/12 * 0.528

= 0.333



Sharif University

of Technologytitle2828
Sharif University

of Technologytitle2828

ID3 algorithm: Properties

• The algorithm 
• either reaches homogenous nodes 

• or runs out of attributes

• Guaranteed to find a tree consistent with any conflict-free 
training set 
• ID3 hypothesis space of all DTs contains all discrete-valued functions

• Conflict free training set: identical feature vectors always assigned the 
same class

• But not necessarily find the simplest tree (containing minimum 
number of nodes).
• a greedy algorithm with locally-optimal decisions at each node (no 

backtrack). 

28 Decision Tree
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Decision tree learning:
Function approximation problem

• Problem Setting:
• Set of possible instances 𝑋
• Unknown target function 𝑓: 𝑋 → 𝑌 (𝑌 is discrete valued)

• Set of function hypotheses 𝐻 = { ℎ | ℎ ∶  𝑋 → 𝑌 }
• ℎ is a DT where tree sorts each 𝒙 to a leaf which assigns a label 𝑦

• Input:
• Training examples {(𝒙 𝑖 , 𝑦 𝑖 )} of unknown target function 𝑓

• Output:
• Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓

29 Decision Tree
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Decision tree hypothesis space 

• Suppose attributes are Boolean

• Disjunction of conjunctions

• Which trees to show the following functions?
• 𝑦 = 𝑥1 𝑎𝑛𝑑 𝑥5
• 𝑦 = 𝑥1 𝑜𝑟 𝑥4
• 𝑦 = (𝑥1 𝑎𝑛𝑑 𝑥5) 𝑜𝑟(𝑥2 𝑎𝑛𝑑 ¬𝑥4)  ?

30 Decision Tree
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Decision tree as a rule base

• Decision tree = a set of rules

• Disjunctions of conjunctions on the attribute values
• Each path from root to a leaf = conjunction of attribute 

tests

• All of the leafs with 𝑦 = 𝑖 are considered to find the rule 
for 𝑦 = 𝑖 

31 Decision Tree



Sharif University

of Technologytitle3232
Sharif University

of Technologytitle3232

How partition instance space?

• Decision tree

• Partition the instance space into axis-parallel regions, labeled with 
class value

32

[Duda & Hurt ’s Book]

Decision Tree
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ID3 as a search in the space of trees

• ID3: heuristic search through 
space of DTs
• Performs a simple to complex 

hill-climbing search (begins 
with empty tree)

• prefers simpler hypotheses due 
to using IG as a measure of 
selecting attribute test 

• IG gives a bias for trees with 
minimal size.
• ID3 implements a search 

(preference) bias instead of a 
restriction bias.

33 Decision Tree
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Why prefer short hypotheses? 

• Why is the optimal solution the smallest tree?

• Fewer short hypotheses than long ones
• a short hypothesis that fits the data is less likely to be a 

statistical coincidence 
• Lower variance of the smaller trees

34

Ockham (1285-1349) Principle of Parsimony: 

“One should not increase, beyond what is necessary, 

the number of entities required to explain anything.” 

Decision Tree
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Over-fitting problem

• ID3 perfectly classifies training data (for consistent 
data)
• It tries to memorize every training data

• Poor decisions when very little data (it may not reflect 
reliable trends)
• Noise in the training data: the tree is erroneously fitting.

• A node that “should” be pure but had a single (or few) 
exception(s)?

• For many (non relevant) attributes, the algorithm 
will continue to split nodes 
• leads to over-fitting! 

35 Decision Tree
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Over-fitting problem: an example

• Consider adding a (noisy) training example:

36

PlayTennisWindHumidityTempOutlook

NoStrongNormalHotSunny

Temp

Yes Yes No

Cool Mild Hot

Decision Tree
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Over-fitting in decision tree learning

• Hypothesis space 𝐻: decision trees

• Training (emprical) error of ℎ ∈ 𝐻 : 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ)
• Expected error of ℎ ∈ 𝐻: 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ)
• ℎ overfits training data if there is a ℎ′ ∈ 𝐻 such that

• 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛 ℎ < 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ′)
• 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒 ℎ > 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ′)

37 Decision Tree
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A question?

• How can it be made smaller and simpler?

• Early stopping
• When should a node be declared as a leaf?

• If a leaf node is impure, how should the category label be 
assigned?

• Pruning?
• Build a full tree and then post-process it

38 Decision Tree
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Avoiding overfitting 

• Stop growing when the data split is not statistically 
significant.

• Grow full tree and then prune it.
• More successful than stop growing in practice.

• How to select “best” tree:
• Measure performance over separate validation set

• MDL: minimize

• 𝑠𝑖𝑧𝑒 𝑡𝑟𝑒𝑒 + 𝑠𝑖𝑧𝑒(𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑡𝑟𝑒𝑒))
39 Decision Tree
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Reduced-error pruning

• Split data into train and validation set 

• Build tree using training set 

• Do until further pruning is harmful:

• Evaluate impact on validation set when pruning sub-tree 
rooted at each node  
• Temporarily remove sub-tree rooted at node 

• Replace it with a leaf labeled with the current majority class at that node 

• Measure and record error on validation set

• Greedily remove the one that most improves validation set 
accuracy (if any).

40

Produces smallest version of the most accurate sub-tree.
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C4.5

• C4.5 is an extension of ID3
• Learn the decision tree from samples (allows overfitting)

• Convert the tree into the equivalent set of rules

• Prune (generalize) each rule by removing any precondition that results 
in improving estimated accuracy

• Sort the pruned rules by their estimated accuracy

• consider them in sequence when classifying new instances

• Why converting the decision tree to rules before pruning?
• Distinguishing among different contexts in which a decision node is 

used

• Removes the distinction between attribute tests that occur near the 
root and those that occur near the leaves

41 Decision Tree
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Continuous attributes

• Tests on continuous variables as Boolean?

• Either use threshold to turn into binary or discretize 

• It’s possible to compute information gain for all possible 
thresholds (there are a finite number of training 
samples) 

• Harder if we wish to assign more than two values (can 
be done recursively) 

42 Decision Tree
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Classification

Confusion Matrix
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Ranking classifiers

44

[Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised Learning Algorithms, ICML 2006] 

Top 8 are all based on various extensions of 

decision trees 

Decision Tree
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Decision tree advantages

• Simple to understand and interpret

• Requires little data preparation and also can handle both 
numerical and categorical data

• Time efficiency of learning decision tree classifier

• Cab be used on large datasets

• Robust: Performs well even if its assumptions are somewhat 
violated

45 Decision Tree
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